
A Novel Optimization Technique for Determination
of Parametric Queries

Arepu Yuvakishore & Kumar Vasantha

Department of CSE
Avanthi Institute of Engg & Tech
Tamaram, Visakhapatnam, India.

Abstract- In this paper we proposed to progressively explore the
parameter space and build a parametric plan during several
executions of a query. Novel algorithms which resemble
parametric plans are populated, are able to frequently bypass
the optimizer but still execute optimal or near-optimal plans. It
is known that commercial applications usually rely on
precompiled parameterized procedures to interact with a
database. Unfortunately, executing a procedure with a set of
parameters different from those used at compilation time may
be arbitrarily suboptimal. Hence Parametric query optimization
(PQO) attempts to solve this problem by exhaustively
determining the optimal plans at each point of the parameter
space at compile time.

Keywords - Parametric query optimization, frequency
estimation, dynamic recompilation.

I. INTRODUCTION

The values of runtime parameters of the system, data, or
queries themselves are unknown when queries are originally
optimized but in certain situations two methods are used
these scenarios, there are typically two trivial alternatives to
deal with the optimization and execution of such
parameterized queries. One approach, termed here as
Optimize-Always, is to call the optimizer and generate a new
execution plan every time a new instance of the query is
invoked. Another trivial approach, termed Optimize-Once, is
to optimize the query just once, with some set of parameter
values, and reuse the resulting physical plan for any
subsequent set of parameters. Both approaches have clear
disadvantages. In addition, Optimize-Always may limit the
number of concurrent queries in the system, as the
optimization process itself may consume too much memory.
On the other hand, Optimize-Once returns a single plan that
is used for all points in the parameter space.
However, in reality, the cost functions of physical plans and
regions of optimality are not so well behaved. A more
important problem results from the fact that PQO has a much
higher start-up cost than optimizing a query a single time
(PQO usually requires several invocations of the optimizer
with different parameters [1], [2]). When a previously
unseen query arrives, it is therefore not clear to determine
whether PQO should be used: it may not be cost-effective to
solve the full PQO problem if the query is not executed
frequently or if it is repeatedly executed with values covering
a small subspace of the entire parameter space.

II. PROGRESSIVE PARAMETRIC QUERY

OPTIMIZATION
The main goal / idea of Progressive parametric query
optimization (PPQO) solves the solution to the PQO problem
as successive 582 query execution calls are submitted to the
DBMS as given in Fig. 1,

This shows a high-level architecture of our approach. Given a
query and its parameter values, a traditional optimizer returns
the optimal execution plan along with its estimated cost. In
contrast, a PPQO-enabled optimizer introduces a data
structure called PP, which incrementally maintains plans and
optimality regions, allowing us to reuse work across
optimizations. When a new instance of a parametric query
arrives, PPQO tries to obtain an optimal (or near-optimal)
plan by consulting the PP data structure. If it is successful, it
returns such plan, and a full optimization call is avoided.
Otherwise, it makes an optimization call, and both the
resulting optimal plan and cost are added to the PP for future
use. Due to the size of the parameter space, PPs should not be
implemented as exact lookup caches of plans because there
would be too many “cache misses.” Also, due to the
nonlinear and discontinuous nature of cost functions, PPs
should not be implemented as nearest neighbor lookup
structures as there will be no guarantee that the optimal plan
of the nearest neighbor is optimal or close to optimal for the
point in the parameter space being considered [3], [4]. We
now describe the PPQO problem in more detail, borrowing
notation and definitions from the classic parametric
optimization problem.

Arepu Yuvakishore et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 87 - 90

www.ijcsit.com 87

III. PARAMETER TRANSFORMATION FUNCTION
It is known that a value parameter refers to an input value of
the parametric SQL query to execute, a cost parameter is an
input parameter in the formulas used by the optimizer to
estimate the cost of a query plan. Cost parameters are
estimated during query optimization from value parameters
and from information in the database catalog. (Physical
characteristics that affect the cost of plans but do not depend
on query parameters, such as the average tuple size or the
cost of a random I/O, are considered physical constants
instead of cost parameters).
Example 1. Table FRESHMEN (NAME, AGE) succinctly
describes first-year graduate students. The age distribution of
students is showed in Fig. 2. Consider queries of the
following form:
SELECT * FROM FRESHMEN
WHERE AGE=X OR AGE=Y

Fig. 2.Age distribution in table FRESHMEN

The parameters of this query can be represented as the
absolute values used for parameters X and Y or as the
selectivities of predicate age = X and predicate age = Y.
Accordingly, the costs of physical PIDX and PFS can be
represented in value-based parameter spaces, shown in Fig. 3,
or in selectivity-based (also referred to as cost-based)
parameter spaces, shown in Fig. 4.

Fig. 3.Value-based parameter space

Fig. 4.Selectivity-based parameter space

It becomes much easier to characterize the regions of
optimality using a cost-based parameter space than using a
value-based parameter space. We assume that function Ψ’
takes query Q and its SQL parameters, vpt, and returns cpt as
a vector of selectivity’s. Computing the selectivity’s in cpt
corresponds to the task of selectivity estimation, a subroutine
inside of query optimization. We note that the arity of the
value-based parameter space and that of the selectivity-based
parameter space are not necessarily the same. On one hand, it
is possible to have predicates of the form age > X and age
< Y, where two value predicates are collapsed into a single
selectivity value for the combined predicate. In our prototype
and experimental evaluation, we use a simple one-to-one
mapping between parametric predicates and selectivity
values.

The reasons behind our choice are the following: 1) this is the
mapping used in previous work on parametric optimization,
2) it can be implemented without deep knowledge about the
underlying query optimizer, and 3) our experiments show that
this simple model is very competitive.

IV. PARAMETRICS PLANS:
(a) Requirements and Goals: The main trade-off in
PPQO is to avoid as many optimization calls as possible as
long as we are willing to execute suboptimal—but close to
optimal—plans (note that this goal has also been proposed in
[5] and [6] in the context of classical PQO). Thus, PP
implementations must obey the Inference Requirement
below.
(b) Inference Requirement. After a number of add Plan
calls, there must be cases where getPlan returns an (near-
)optimal plan p for query Q and parameter point cpt, even if
addPlan(Q,cpt,p.cost) was never called. Given a sequence of
execution requests of the same query with potentially
different input parameters, PPQO has therefore two
conflicting goals:
Goal 1. Minimize the number of optimization calls.
Goal 2. Execute plans with costs as close to the cost of the
optimal plan as possible.
Consider a trivial cache implementation of the PP interface,
which stores (Q, cpt) pairs as the lookup key and (p, cost) as
the inserted value. This implementation cannot fulfill the
inference requirement because it would return hits only for

Arepu Yuvakishore et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 87 - 90

www.ijcsit.com 88

previously inserted (Q,cpt) pairs. In the next we propose two
PPQO implementations, each giving priority to one of the
above goals.

V. THE BOUNDED – PPQO IMPLEMENTATION
The proposed PPQO implementations known as Bounded-
PPQO or simply bounded. This implementation provides
guarantees on the quality of the plans returned by getPlan (Q,
cpt), thus focusing on Goal 2 of PPQO (see previous). Either
the returned plan p is null (and an optimization call cannot be
avoided) or p has a cost guaranteed to be within a user
specified bound of the cost of the optimal plan. Specifically,
the cost of plan p returned by get next is guaranteed to be
bounded by OptCost_M+A, where OptCost is the cost of the
optimal plan, and M≥1 and A≥0 are user-defined constants.
Both M and A can be used to specify different bounds on
suboptimality and are generally application specific.
The ellipse-ppqo implementation
Bounded’s getPlan provides strong guarantees on the cost of
plans returned. However, we expect low hit rates of
Bounded’s getPlan for small values of M and A or before
Bounded’s TQ has been populated. In this we propose the
Ellipse-PPQO (or simply Ellipse) implementation of the PP
interface, designed to address Goal 1. For that purpose,
Ellipse’s get Plan returns-acceptable plans rather than
guaranteed near-optimal costs.
It follows from the definition of Δ acceptable that if p is
optimal at cpt1 and cpt2, then p is 1-acceptable only on points
between cpt1 and cpt2 and p is 0-acceptable at all points. Note
that in a two-dimensional space, the area where p is Δ
acceptable is equivalent to the definition of an ellipse; if p is
optimal for cpt1 and cpt2, then p is Δ acceptable at cpt if cpt
is on or inside an ellipse of foci cpt1 and cpt2 such that the
distance between the foci, ||cpt1-cpt2||. Over the sum of the
distances between cpt and the foci, ||cpt-cpt1||+ || cpt- Cpt2||,
is at least Δ shows the areas where p is 0.5-acceptable, 0.8-
acceptable, and 1-acceptable if p is optimal at cpt1 and cpt2.
Ellipse-PPQO encodes the heuristic that if a plan p is optimal
in two points cpt1 and cpt2, then p is likely to be optimal or
near-optimal in a convex region that encloses cpt1 and cpt2.
Note that a nearest neighbour algorithm could be used as an
alternative to Ellipse-PPQO. However, since regions of
optimality are frequently long and narrow [4], for any given
cpt point, the closest known plan could very well be from
another region of optimality. In addition, Δ acceptable areas
can easily encode both small and large regions of optimality
Implementation of addPlan for Ellipse: The implementation
of addPlan for Ellipse proceeds as follows: For each query Q
and for each plan p that is optimal in some point of the
parameter space, Ellipse’s addPlan(Q; cpt; p; cost) essentially
maintains a list of (cpt; cost) pairs, where p is optimal for Q

VI. EVALUATION OF EXPERIMENT
An experimental evaluation of PPQO using Microsoft SQL
Server 2005. The client application implements the
pseudocode and Microsoft SQL Server is used to obtain
estimated optimal plans and estimated costs of plans.

Data Set, Metrics, and Setup
Table 1 shows which tables are joined by each query. The
tables are line item (L), orders (O), customer (C), supplier
(S), part (P), partsupp (T), nation (N), and region (R). As in
the work of Reddy and Haritsa [4] and unless otherwise
noted, we added two extra selections to the TPC-H queries to
more easily explore the parameter space. The two selections
are of the form coli≤ vali, i=1,2 where for each query, coli is
one of the two columns shown in Table 1, and vali is a
random value from the domain of the column. For each query
tested, we generated 10,000 random val1 and val2 values.
(A(val1,val2)pair is a ValuePoint.) To guarantee that random
parameter values uniformly explore the parameter space, we
altered the values in the columns subject to the extra
selections to such that those values are uniformly distributed
in their domains instead of using the nonuniform TPC-H
generated distributions. For each query and each ValuePoint
vpt, we make a getPlan lookup call where PP is either
Optimize- Once, Optimize-Always, Bounded, or Ellipse. If
getPlan returns a plan, we call it a hit and check if the plan is
optimal; if it is not optimal, we check how its estimated cost
compares with the estimated optimal cost.

VII. VARIATION ON HIT RATE AND OPT RATE
The first experiment consisted of processing queries using
10,000 different random ValuePoints (value vectors) for each
query and observing how HitRate and OptRate varied for
Bounded and Ellipse. This experiment was performed for the
five TPC-H queries listed in Table 1, and the results for three
are shown in Figs. Several trends can be observed:
 Ellipse always has a higher HitRate than Bounded.
 Except for Query 8 (more on this below), Bounded

always has a higher OptRate than Ellipse.
 HitRate converges quickly, but OptRate converges

slightly faster.
 HitRate monotonically increases as a function of QP

(more processed queries imply more misses, and each
miss adds information to the ParametricPlan, therefore
increasing the likelihood of future hits).

 OptRate naturally varies up and down, as the initial
random (cpt,plan,cost) triples are added to the
ParametricPlan object, until it converges.

Number of Plans and of Points, Space, and Time
Storing the number of plans and the number of points took
only between ~600 Kbytes to ~1,300 Kbytes using the
original uncompressed XML plan representations provided
by SQL Server. Storing zip-compressed XML plans instead
would decrease the size of the plan representation by a factor
of 10. (Plans do not need to be understood, zipped, or
unzipped by addPlan or getPlan functions.)It reports the time
and space taken by the Bounded and Ellipse approaches
during optimization. Time (in seconds) includes the time
elapsed during optimization (if there is a miss), during
addPlan, and during getPlan but not the execution time nor
the time consumed by function Ψ. For comparison purposes,
the time taken for Optimize-Once and Optimize-Always is
also included. After 10,000 queries have been processed,

Arepu Yuvakishore et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 87 - 90

www.ijcsit.com 89

Optimize- Always took between 5.2 and 13.6 times longer
than Bounded and between 10.7 and 18.5 times longer than
Ellipse. Thus, although Boundedonly used between 7 percent
and 20 percent of the optimization time, it still returned plans
that were on the average just 1 percent more costly than the
optimal plan. Ellipse used between 5 percent and 9 percent of
the optimization time and returned plans that were 6 percent
more costly than the optimal plan. Ellipse was always faster
than Bounded because it had less optimize and addPlan calls
(due to higher HitRates) and faster getPlan calls (because it
has less information stored in its PPs). Note that although
Optimize-Once spends the least optimization time, it is not
the best overall approach. In fact, the entire PQO research
area aims to overcome the performance problems of using
Optimize-Once.

VIII. CONCLUSION
Before PPQO, processing parameterized queries was an allor-
nothing approach: either the optimizer explores all the
parameter space and computes the full PQO solution
(traditional PQO) or it relies on luck and uses the very first
plan it gets for a query. At execution time, PPQO selects
which plan to execute by using only the input cost parameters
without recosting plans. PPQO is an adaptive technique that
works prior to execution (and assumes the optimizer to be
correct—just like any other PQO approach). Query
reoptimization [6] and other adaptive query processing
(AQP) approaches [1], [4] work during optimization and
execution and assume that the optimizer can make mistakes
or that the system characteristics change significantly during
the execution of a single query. Also, PPQO is an interquery
adaptive approach, while AQP are frequently intraquery
optimization approaches. PPQO is also amenable to be
implemented in a complex commercial database system as it
requires no changes in the optimization or execution
processes.
 In fact, our PPQO prototype ran outside the DBMS server.
For technical reasons, we did not implement function Ψ
ourselves but instead used SQL Server’s cost model to
transform value into cost parameters. For that reason, we did
not evaluate the impact of such function in our experimental
evaluation. PPQO was evaluated in a variety of settings, with
queries joining up to table, with multiple sub queries, up to
four parameters, and in plan spaces with close to 400
different optimal plans. PPQO yielded good results in all
scenarios except for the Bounded algorithm in complex
queries using a four-dimensional parameter space. However,
even in this challenging scenario, Ellipse on the average
executed plans just 3 percent more costly than the optimal,
while avoiding 87 percent of all optimization calls.

REFERENCES
[1] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear

and Piecewise Linear Cost Functions,” Proc. 28th Int’l Conf. Very
Large Data Bases (VLDB), 2002.

[2] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-Intrusive
Parametric Query Optimization for Nonlinear Cost Functions,” Proc.
28th Int’l Conf. Very Large Data Bases (VLDB), 2003.

[3] D. Harish, P. Darera, and J. Haritsa, “On the Production of Anorexic Plan
Diagrams,” Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB),
2007.

[4] N. Reddy and J.R. Haritsa, “Analyzing Plan Diagrams of Database Query
Optimizers,” Proc. 31st Int’l Conf. Very Large Data Bases (VLDB),
2005.

[5] S. Ganguly, “Design and Analysis of Parametric Query Optimization
Algorithms,” Proc. 24th Int’l Conf. Very Large Data Bases (VLDB),
1998.

[6] N. Kabra and D.J. DeWitt, “Efficient Mid-Query Re-Optimization of
Sub-Optimal Query Execution Plans,” Proc. ACM SIGMOD, 1998.

[7]V.G.V. Prasad, “Parametric Query Optimization: A Geometric
Approach,” MSc thesis, IIT, Kampur, 1999.

[8] S.V.U. Maheswara Rao, “Parametric Query Optimization: A Non-
Geometric Approach,” master’s thesis, IIT, Kampur, 1999.

AUTHORS:

Mr. AREPU YUVAKISHORE received the B.Tech
degree in S.V.H College Of Engineering in 2005 under
Acharya Nagarjuna University and He is currently
pursuing M.Tech in Software Engineering at Avanthi
Institute of Engineering and Technology,
Vishakhapatnam His research interests include Data
Mining and Query Optimization.

Mr. KUMAR VASANTHA received the M. Tech
degree from the Department of Computer Science
and Engineering, Avanthi Institute of Engineering and
Technology, Vishakhapatnam, JNT University,
Kakinada in 2009 and working as an Assistant
Professor in Avanthi Institute of Engineering and
Technology, Vishakhapatnam. His research interests
include Information Security and Data Mining.

Arepu Yuvakishore et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 87 - 90

www.ijcsit.com 90

